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Abstract
In the biaxial nanospin system, quantum tunnelling of the magnetization vector
oscillates with increasing magnetic field or temperature. When the number
of instanons is equal to the number of anti-instantons, the annihilation of
instanton–anti-instanton pair results in a vanished Berry curvature, it leads to
the topological quenching point. When the number of instantons and anti-
instantons is not equal, berry curvature is nonzero, this suggests that there
are extra instantons that revive the tunnelling splitting. So the generation
(annihilation) of instanton induced the revival (quenching) of tunnel splitting.
This generation or annihilation is accompanied by different phase transitions
which can be distinguished by H/Hc

1−K2/K1
. When the system slides from the

phase of H/Hc < 1 − K2/K1 into the phase of H/Hc > 1 − K2/K1, an
instanton will be generated (annihilated), which revives (quenches) the quantum
tunnelling. This conclusion also holds when phase transition occurs in the
opposite direction, i.e., from H/Hc > 1 − K2/K1 to H/Hc < 1 − K2/K1. So
there is a phase transition that occurs alternatively in the magnetic molecule
system when the topological quenching of the tunnel splitting occurs quasi-
periodically.

PACS numbers: 03.75.Lm, 74.40.Gk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For a single-domain ferromagnetic nanoparticle at sufficiently low temperatures, all the spins
are locked together by the strong exchange interaction, and therefore only the orientation of
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the total magnetization vector can change but not its absolute value. The magnetocrystalline
anisotropy and the external applied magnetic field can create easy directions for the total
magnetization vector which correspond to local minima of magnetic energy. The vector of the
magnetization of spins can coherently tunnel between the minima of magnetic energy.

The behaviours of quantum tunnelling of the magnetization vector are sensitive to the
parity of total spin of the single-domain magnet. It has been demonstrated that the ground-state
tunnelling level splitting is completely suppressed [1, 2] to zero for the half-integer total spin
ferromagnetic nanoparticles with biaxial crystal symmetry. The tunnel splitting oscillates [3]
as a function of magnetic field H and vanished at 2J field values lying in the interval
(−H ∗,H ∗), where H ∗ = (1 − λ)1/2Hc. Chudnovsky and Martinez-Hidalgo [4] have found
that the switching from oscillations to the monotonic growth of the tunnelling splitting exists
beyond the field range of (−H ∗,H ∗). Due to the cancellation between the real-time motion of
the instanton and the contribution of the topological phase, the splitting grows monotonically
instead of oscillating in the field range of H > H ∗. Garg extended the previous calculations
of the ground-state tunnel splittings in the presence of a magnetic field along the hard axis
and clarified the physical meaning of the monotonic growth from the viewpoint of level
crossing [3].

Besides the oscillation of the tunnel splitting of the ground states in the presence of the
magnetic field along the hard axis at zero temperature, Kim found that for a given magnetic
field along the hard axis the tunnel splitting also oscillates with increasing temperature
and it is topologically quenched quasi-periodically [5]. Furthermore, Martinez-Hidalgo
and Chudnovsky found a double transition—from thermal activation to thermally activated
quantum tunnelling and then to ground-state quantum tunnelling [6]. Using the Landau phase
transition theory, Kim also found that the oscillation of the tunnel splitting presents different
behaviours in different phases at the phase transition temperature, the different behaviours are
marked by different phase transitions in the phase diagram of H/Hc − (1 − K2/K1) at the
critical temperature.

When we increase external applied magnetic field H in the phase of H/Hc < 1 − K2/K1

(K is the anisotropy constant, we denote u = H/Hc and K2/K1 = λ for convenience),
the oscillation near the zero temperature has a larger monotonic region and the topological
quenching happens slowly. While in the phase of H/Hc > 1 − K2/K1, the monotonic region
near zero temperature becomes smaller and the topological quenching occurs more often [5].
The different behaviours of the tunnelling splitting correspond to different phase transitions.
It bears a topological origin in the framework of topological quenching of quantum tunnelling.
In this paper, we will present a theoretical explanation to Kim’s numerical results of different
phase behaviours within a novel instanton approach.

The instanton method has been widely applied to study the quantum tunnelling. The
quantum tunnelling is completely suppressed if the total spin of the magnetic particle is half
integral but is allowed in integral-spin particle [7], such as tunnelling of the magnetic in
small ferromagnetic particles [8], tunnelling of the Neel vector in anti-ferromagnetic particles
[9], quantum nucleation of magnetic domains [10] and tunnelling of domain walls [11]. The
quantum tunnelling suppression has a topological origin and arises as a destructive interference
between different paths. Within an instanton approximation [12], it can be clearly seen that
this suppression actually arises as the destructive interference between the instanton and
anti-instanton.

In the Yang–Mills field theory, instanton is a kind of soliton, which tunnels through
different vacua. While in the molecule magnetic cluster system, the lowest energy levels play
the role of two different vacua; in this case, the instantons are the symmetry-related tunnelling
paths connecting two classically degenerate minima, on which the action is stationary.
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How the interference between the instanton and anti-instanton occurs in different phases
is an interesting open question. We will provide a novel approach to the quantum interference
from a new field theory of Berry curvature; the instanton path will be treated as topological
particles moving in the configuration space. It will be clearly seen how destructive interference
between instantons and anti-instantons happens. The phase transition is induced by the
generalization and annihilation of instantons, which also indicates the quenching and revival
of the quantum tunnelling.

This paper is organized as follows: in section 2, by introducing the topological current of
instantons and anti-instanton, we obtain two classes of solutions and studied the topological
number of Berry curvature in different phases. In section 3, we studied the two kinds of phase
transitions and the total topological charge of instantons. In the last section, a brief summary
is presented.

2. Instantons and quantum interference

The tunnelling rate or the tunnelling splitting � for macroscopic magnetization tunnelling is
given by � = A exp

(− IE

h̄

)
, here IE is the Euclidean counterpart of the magnetic action

I =
∫

dtL =
∫

dt{−h̄σ (cos θ − 1)φ̇ − E(θ, φ)}. (1)

The first term ω[n̂] = ∫ π

0 h̄σ (1 − cos θ) dφ is Wess–Zumino term which is of crucial
importance in studying the topological quenching of tunnelling in magnetic molecules. It
is intimately related to the Berry phase. For any path on the 2-sphere S2, the contribution of
this term to the action is equal to iσ times the area swept out on S2 between the path and the
north pole; for closed paths this has exactly the form of the Berry phase. When the destructive
interference between the instanton and anti-instanton happens, the tunnelling rate � becomes
zero. In this section, we proposed a topological current which vanishes when the destructive
interference happened.

We start from the Hamiltonian with correct anisotropy structure in a magnetic field
along −ẑ,

H = K1J
2
x + K2J

2
y + gµBHJz, (2)

this Hamiltonian is invariant below 180◦ rotations about ẑ, and so it is best to work in the Jz

basis |m〉. To understand the eigenstates of H, we write its mean value in the coherent state
|θ, φ〉 as E(θ, φ). Dropping terms of order J compared to J 2, we have

E(θ, φ) = (K1 cos2 φ + K2 sin2 φ)J 2 sin2 θ + gµBHJ cos θ. (3)

For clarity, we denote cos θ = v, u = cos θ0 = H/Hc and λ = K2/K1, here Hc = 2K1/(gµB)

and K1 > K2. Adding a constant term, this classical anisotropy energy E can be rewritten as

E(u, φ) = K1(v − u)2 + λ(1 − v2) sin2 φ, (4)

where �n is the magnetization direction and K1 > K2 > 0. Considering a single-domain
ferromagnetic particle with the magnetic momentum M = 2µBS and S � 1, the dynamical
equation for M is

dM

dt
= −γM × δE

δM
. (5)

This equation is called Landau–Lifshitz equation or Bloch equation. It can be expressed by
the magnetization direction �m.

The total spin of a single-domain ferromagnetic particle is formed by the ferromagnetic
alignment of atomic spins. The exchange coupling, responsible for this alignment, is usually
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large enough to ensure that, at low temperature, the only relevant dynamics of S in sufficiently
small particles is its coherent rotation satisfying

s
dm̂

dt
= −m̂ × δE

δm̂
. (6)

In terms of coordinates θ and φ, the above equation is equivalent to

θ̇ sin θ = γ

M0

∂E

∂φ
, φ̇ sin θ = γ

M0

∂E

∂θ
. (7)

Substituting equation (3) into equation (7), we arrive at the Euler–Lagrange equations:

θ̇ = −2γ

M
λ
√

(1 − v2) sin φ cos φ, φ̇ = 12γ

M
[(v − u) − λ sin2 φ cos θ ]. (8)

The action is stationary on the instanton path, we introduce the vector order parameter field
from equation (8)

ϕ1 = −2γ

M
λ
√

(1 − v2) sin φ cos φ, ϕ2 = 12γ

M
[(v − u) − λ sin2 φ cos θ ] (9)

and denote θ = q1 and φ = q2. As we known, the unit vector �m describes a two-dimensional
sphere in configuration space; for convenience, we introduce the tangent vector field on this
sphere:

na = ϕa

‖ϕ‖ , nana = 1, ‖ϕ‖ = (ϕaϕa)
1
2 . (10)

Based on this tangent vector field, we will obtain a new expression for the Berry curvature.
Obviously, the zero points of ϕ are the singular point of the unit vector field �n. However,
singular points are always very important to the topology of the systems. For example, on a
two-dimensional sphere, there must be at least two singular points, each of which is assigned
with a winding number W = +1, to make sure that the Euler characteristic is 2. In fact, in
the nonlinear σ model of one-dimensional anti-ferromagnetic ring, the Neel unit vector �m just
describes a unit 2-sphere S2. The unit vector field �n = (n1, n2) can be viewed as the tangent
vector on the sphere S2, while it will be shown that the topological soliton—instanton—sits
at the singular points of �n.

By introducing the SO(2) spin connection ωab
µ nb, we define the covariant derivative of

the unit vector field as

Dµna = ∂µna − ωab
µ nb. (11)

It is easy to verify that the SO(2) spin connection ωab
µ can be rewritten as

ωab
µ = (∂µnanb − ∂µnbna) − (Dµnanb − Dµnbna). (12)

Keeping in mind the U(1) gauge potential Aµ = 1
2εbaω

ab
µ , we have

Aµ = εabn
a∂µnb − εabDµnanb. (13)

If εabn
b = ka , i.e., ka is perpendicular to na , then using na and ka , the U(1) connection can be

reduced further to Aµ = ∂µnaka − Dµnaka . Let ua be a unit vector field satisfying Dµua = 0
with ua = cos θna + sin θka , it can be proved that −kaDµna = ∂µθ . Therefore, the covariant
derivative part of (13) is identified to the gradient of a phase factor θ , then equation (13) can
be expressed as

Aµ = εabn
a∂µnb + ∂µθ. (14)

We can see that the second term of (14), ∂µθ , behaves as a U(1) gauge transformation of
Aµ, it vanishes spontaneously in the gauge field tensor Fµν and can be ignored in U(1) gauge
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potential decomposition theory [16]. Substituting equation (14) into the U(1) gauge field
tensor Fµν = (∂µAν − ∂νAµ), we have

Fµν = εab∂µna∂νn
b. (15)

It is easy to see that the gauge field 2-form F = 1
2εµνFµν d2q = εµνεab∂µna∂νn

b d2q bears
the familiar form of a topological current.

In the nonlinear σ model of one-dimensional anti-ferromagnetic ring, the Wess–Zumino
term can be defined by the Neel unit vector �m: εµν �m · (∂µ �m × ∂ν �m), it can be rewritten as
εµνεabcma(∂µmb∂νm

c). If we choose �m = (sin θ cos φ, sin θ sin φ, cos θ), it is easy to verify
that it is identical with the usual Wess–Zumino term −is(1 − cos θ)φ̇. Moreover, instantons
which arise from the topological current of gauge field 2-form F = 1

2εµνFµνd
2q is inconsistent

with the Wess–Zumino term.
Using ∂µ

ϕa

‖ϕ‖ = ∂µϕa

‖ϕ‖ + ϕa∂µ
1

‖ϕ‖ and the Green function relation in ϕ-space: ∂a∂a ln‖ϕ‖ =
2πδ2(�ϕ)

(
∂a = ∂

∂ϕa

)
, one can prove [16] that

F = εµνεab∂µna∂νn
b = 2πδ2(�ϕ)D

(
ϕ

q

)
(16)

where D
(

ϕ

q

)
is the Jacobian vector. Equation (16) is an another kind of expression for Berry

curvature. In the Yang–Mills gauge field theory, instantons solutions [13] arise from the self-
dual equation Fµν = 1

2εµνλρFλρ . When �ϕ = 0, the gauge field is infinite, then the self-dual
equation is spontaneously satisfied. Therefore, the solutions of �ϕ = 0 correspond to instanton
solutions. In the differential geometry theory, the first Chern number is given by

χ(M) = 1

2π

∫
F =

∫
M

δ2(�ϕ)D

(
ϕ

q

)
d2q. (17)

It can be proved, on a compact oriented two-dimensional manifold, that the Euler number is
equal to the first Chern number. As we know, the Euler number of a 2-sphere is 2; if the
configuration space of the system forms a 2-sphere, this Chern number is 2. In that case there
must exist at least two instantons. The expression (17) provides us an important conclusion:
χ = 0, iff �ϕ �= 0;χ �= 0, iff �ϕ = 0. In other words, if there exist instantons, the Chern number
is nontrivial; if there are no instantons, the Chern number vanishes. So it is necessary to study
the zero points of �ϕ to determine the nonzero solutions of χ . The implicit function theory
shows [14] that under the regular condition D(ϕ/q) �= 0, the solutions of equations

ϕ1 = −2γ

M
λ
√

(1 − v2) sin φ cos φ = 0, ϕ2 = 12γ

M
[v(1 − λ sin2 φ) − u0] = 0 (18)

can be expressed as ql = {θn, φm}(l = 1, 2, . . . , N). According to the δ-function theory
[15, 16], one can expand δ(�ϕ) at the N solutions ql = {θn, φm} as

δ2(�ϕ) =
N∑

l=1

βl

δ2(q − �ql)∣∣D(
ϕ

q

)∣∣
ql

(19)

where l denotes the indices pair {n,m}. The positive integer βl = |Wl| is called the Hopf index
of ϕ-mapping which means that when the point �q covers the neighbourhood of the zero point
�qn once, the vector field �ϕ covers the corresponding region βn times. Considering equation
(16), the gauge field 2-form can be expanded as

F = 2π

N∑
l=1

βlηlδ
2(q − �ql)d

2q (20)
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where

ηl =
D

(
ϕ

q

)
ql∣∣D(

ϕ

q

)∣∣
ql

= sgn

(
D

(
ϕ

q

)
ql

)
= ±1 (21)

is called the Brouwer degree of map ϕ. While βlηl = Wl is just the winding number of the lth
zero point. ηl can be obtained by substituting equation (9) into the Jacobian

D

(
ϕ

q

)
=

(
∂ϕ1

∂θ

∂ϕ2

∂φ
− ∂ϕ2

∂θ

∂ϕ1

∂φ

)
, (22)

it yields

D

(
ϕ

q

)
= 12

( γ

M

)2
(

K2

K1

)2

cos θsin2 2φ − 24
( γ

M

)2
(

K2

K1

)
sin2 θcos 2φ

(
1 − K2

K1
sin2φ

)
.

(23)

This is the fundamental equation to find the value of the Brouwer degree ηl at the zero points
ql . In terms of the Brouwer degree ηl and Hopf index βl , the Euler topological number,
equation (17), becomes

χ(M) =
N∑

l=1

βlηl. (24)

2.1. The case for the first solution

There are two classes of solutions of equation (18); first, we present a brief discussion of the
first solution

θ = nπ, φ = arcsin

(√
± cos θ0

1 − K2
K1

)
+ 2mπ (n = ±1,±2, . . . ,±N). (25)

Substituting equation (25) into equation (23), we have

D(1)

(
ϕ

q

)
= 48

( γ

M

)2
λ2 u

1 − λ

[
(−1)n − u

1 − λ

]
. (26)

As defined above, γ > 0,K1 > K2 > 0, so λ = K2/K1 < 1, then
(
1− 1

λ

)
< 0; therefore,

the Brouwer degree of the first solution is η
(1)
l = sgn(D1(ϕ/q)) = (−1)n. Then equation (20)

can be rewritten as

F = 2π

N∑
n,m=0

|W(n,m)|(−1)n+1δ(θ − nπ)δ

(
φ − arcsin

√
K1

K2
+ 2mπ

)
dθ dφ, (27)

when n = 2p + 1 (p is integer), the winding number W(n,m) > 0, it represents the

instantons periodically distributed along the θ -axis when the angle φ varies from arcsin
√

K1
K2

to arcsin
√

K1
K2

+ 2mπ . When n = 2p (p is integer), the winding number W(n,m) < 0, it
represents the anti-instantons. Now we see that the topological charge of the instanton and
anti-instantons is highly dependent on the parity of periodic number n. Equation (27) indicates
that the instantons at nπ is identical with its parallel transformation to (n + k)π , so we choose
the winding number as Wn,m = +1 for instanton and Wn,m = −1 for anti-instantons. The
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topological number of the first solution is

χ(M) =
{∑N

n (−1)n−1, u > (1 − λ),∑N
n (−1)n, u < (1 − λ).

(28)

Obviously, the topological charge of instantons only depends on the periodic number n of θ .
We first consider the range of u < (1 − λ). Since the sign of the winding number of

instantons only depends on n, the total topological charge relies on the parity of n. When
n = 2p + 1 (p is integer), the number of instantons equals the number of anti-instantons and
they possess opposite charge; so, the topological charge of Berry curvature χ = 0. While for
n = 2p (p is integer), χ = 1. In the range of u > (1 − λ), it is the opposite case.

In a wide range of systems, the destructive interference between instanton and anti-
instanton results in suppression of quantum tunnelling if the total spin of the magnetic particle
is half integer. Equation (28) suggests that the destructive interference between instanton and
anti-instanton results in the vanish of topological charge.

2.2. The case for the second solution

Now let us switch to the second solution

θ = arccos

(
cos θ0

1 − K2
K1

)
+ 2nπ, φ = mπ

2
(n = ±1,±2, . . . ,±N). (29)

Substituting the above equation into equation (23), we arrive at

D(2)

(
ϕ

q

)
= 6 ω2

0

[
1 −

(
u

1 − λ

)2
]

(−1)m(1 − λ), (30)

where ω0 = 2γ
√

K2K1/M .
Since λ = K2/K1 < 1, so (1 − λ) > 0, the Brouwer degree for the second class of

solution is decided by u/(1 − λ) and (−1)m. When u > (1 − λ), the Brouwer degree of the
second solution is η

(2)
l = (−1)m+1, if u < (1 − λ), η

(2)
l = (−1)m. So, the topological current

is divided into two cases correspondingly; for u > (1 − λ), it is

F = 2π

N∑
n,m=0

|W(n,m)|(−1)m+1δ
(
θ − nπ − π

2

)
δ
(
φ − mπ

2

)
dθ dφ, (31)

when u < (1 − λ), it becomes

F = 2π

N∑
n,m=0

|W(n,m)|(−1)mδ
(
θ − nπ − π

2

)
δ
(
φ − mπ

2

)
dθ dφ. (32)

Then, we have

χ(M) =
{∑N

n,m=0(−1)m+1|W(n,m)|, u > (1 − λ),∑N
n,m=0(−1)m|W(n,m)|, u < (1 − λ).

(33)

It presents a similar case as the first solution. The only difference is that the first solution
mainly depends on θ , while the second solution depends on φ.

The above equation reveals that, when the system transform from u > (1 − λ) into
u < (1 − λ), the topological charge of instantons will change signs. In other words,
there is a topological phase shift of instantons by eiπ . Keeping in mind λ = K2/K1 and
u = cos θ0 = H/Hc, the flipping of instantons may be observed by adjusting the magnetic
field and anisotropy constant K2,K1.
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Figure 1. The Jacobian of the first solution D(1) maintains a constant configuration whenever n is
an odd number or even number. The solution of D(1) = 0 is u = 1 − λ, which corresponds the
curve on which instantons bifurcated. In the regime u > (1 − λ), there is crag, the velocity of
instanton becomes zero on the edge of the crag. Outside the crag there are no instantons.
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Figure 2. The Jacobian of the second solution D(2) when m is even. The instanton stops when
they meet the crag.

So, the first second solution, equation (32), is divided into two phases, the instantons in
the phase of u > (1 − λ) possess an opposite topological charge to the phase of u < (1 − λ).
While u = (1 − λ) just corresponds to the bifurcation point of instantons, i.e., the instantons
are generating or annihilating on the curve u = (1 − λ).

3. The phase transition and bifurcation of instantons

In fact, the N isolated solutions in the above are derived under the regular condition D
(

ϕ

q

) �= 0,

when this condition fails, i.e., D
(

ϕ

q

) = 0, the branch process will occur. The velocity of the
topological particles in θ − φ plane is given by

dqi

dt
=

Di
(

ϕ

q

)
D0

(
ϕ

q

)
∣∣∣∣∣
(q∗

l )

(i = 1, 2) (34)

where D0(ϕ/q) = D(ϕ/q) = εab∂1ϕ
a∂2ϕ

b, D1(ϕ/q) = εab∂2ϕ
a∂0ϕ

b and D2(ϕ/q) =
εab∂0ϕ

a∂1ϕ
b. When D

(
ϕ

q

) = 0, dqi/dt → ∞. This means the velocity of instantons is infinite.

So, instantons are generating or annihilating at this point. Furthermore, when D
(

ϕ

q

) → ∞
and Di �= 0, the velocity of instantons dqi/dt → 0. From figures 1–3, we see, in the regime
u > 1 − λ, that the Jacobian D

(
ϕ

q

)
dramatically increased to infinity. On the edge of the crag,

the velocity of the topological particles goes to zero; in other words, they finally stopped at
this critical boundary; outside the critical wall, there is no instantons, so instantons condensate
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Figure 3. The Jacobian of the second solution D(2) when m is odd. Comparing it with figure 2,
we show that the two classes of solutions are in opposite phases, the velocity of the instanton is in
opposite direction, but they both stop at the crag. That is the place the instanton transforms into
anti-instanton or the opposite process.

on the edge of the crag. From equation (26) and D(1)

(
ϕ

q

) = 0, we have

λ = 1 u = (−1)n(1 − λ), (35)

while for D(2)

(
ϕ

q

) = 0, equation (30) yields

λ = 1 u = (1 − λ). (36)

Now one sees that they share a same solution λ = 1, when n is even number, the other
solution is u = (1 − λ). Recall that λ = K2/K1 and u = cos θ0, we arrive at K2 = K1

and cos θ0 = (1 − K2/K1). Now we see that instantons of the second solution bifurcated at
H/Hc = (1 − K2/K1) and split into two classes which are distinguished by a eiπ phase shift.

According to the phase transition of Landau theory, this bifurcation line is the borderline
between two different phases. By performing the Gaussian integration over cos θ in the
partition function of the biaxial spin system in the presence of temperature and magnetic field,
Kim obtained the potential U(φ) of the effective action [5]

U(φ) = 1

2
sin2 φ

(
1 − u2

1 − λ sin2 φ

)
. (37)

This potential shows that there are three different ranges of the field. The position φ = π/2
is the maximum for u < 1 − λ, it becomes the local minimum for 1 − λ < u <

√
1 − λ

and the global minimum for
√

1 − λ < u < 1. The maximum starts to change from π/2
either φm[= arcsin

√
(1 − u)/λ] or π − φm at u = 1 − λ and vanishes at u = 1 which defines

the critical field. By introducing the energy variable p = (Umax − E)/(Umax − Umin), where
Umax(Umin) corresponds to the top (bottom) of the potential, the effective action becomes

1

h̄
Seff

E (p) = Umax − Umin

kBT
[1 + αp + βp2 + O(p3)]. (38)

If the factor β is negative (positive), the system becomes the first- (second-) order transition.
There exist two regimes which exhibit the first-order transition, and the phase boundaries are
given by u(<) = (1 − λ)

√
(1 − 2λ)/(1 + λ) and

u±
(>) = 16 − 16λ + λ2 ± λ

√
λ2 + 32λ − 32

16 − 2λ
(39)

where < (>) indicates the field region U smaller (larger) than 1 − λ. Thus, the first-order
regime is surrounded by u(<) < u < 1 − λ and u−

(>) < u < u+
(>). While the second-order

regimes are given by u > 1 − λ and u < u(<) (figure 4).
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Figure 4. The phase diagram u versus λ, where λ = K2/K1 and u = cos θ0 = H/Hc with
Hc = 2K1/(gµB). I and II indicate the first- and the second-order transitions, respectively.

In fact, the phase transition is intimately related to the generation or annihilation of
instantons and anti-instantons. As shown in equation (33), for the second solution, there
are two cases: when u > (1 − λ), it is in the regime of the second-order phase, the
topological current of the instantons is χ(M) = ∑N

n,m=0(−1)m+1|W(n,m)|; while for the case
of u < (1 − λ), it is in the regime of the first-order transition and the topological number is
χ(M) = ∑N

n,m=0(−1)m|W(n,m)|. So, we see that the instantons in the regime of the first-order
phase transition are distinguished by a eiπ phase shift to the instantons in the second-order
transition. Since the instantons are generating or annihilating at the bifurcation line, the
transformation from instanton to anti-instanoton or the reversed process may play a key role
during the phase transition.

So, the two kinds of transitions are topologically distinguished. The bifurcation equation
just indicates the coexistence line equation; the phase diagram bifurcated at this line and
split into the first-order transition and the second-order transition. When n = 2p, the branch
process of the two kinds of phase transitions takes place at the critical points K2 = K1 or
u = (1 − λ). For the case of n = 2p + 1, the coexistence line of the first solution is given by
λ = 1, or u = −(1 − λ), it intersects the coexistence line of the second solution at λ = 1. In
that case the coexistence line is degenerated to a point.

4. Conclusion

Magnetic molecular clusters of [(tacn)6Fe8O2(OH)12]8+ are good candidates for experimental
studies [3], their anisotropy constants are K1 = 0.33K and K2 = 0.22K . The tunnel splitting
oscillation presents different behaviours with increasing external applied magnetic field in
H/Hc < 1 − K2/K1 and H/Hc > 1 − K2/K1. In the phase of H/Hc < 1 − K2/K1,
the oscillation near the zero temperature has a larger monotonic region and the topological
quenching happens slowly. While in the phase of H/Hc > 1 − K2/K1, the monotonic region
near zero temperature becomes smaller and the topological quenching occurs more often.

When instanton and anti-instanton collide on the critical curve H/Hc = 1 −K2/K1, they
annihilate. New pairs of instanton and anti-instanton are also generating on this critical curve.
From our topological current of Berry curvature, one sees that the topological number of Berry
curvature is the sum of topological charges of instanton and anti-instanton. It is shown that
when the number of instantons equals to the number of anti-instantons, the topological charge
vanishes, i.e., the total topological charges of Berry curvature χ = 0. When the number of
instantons and anti-instantons is not equal, the total topological charge is χ = 1. The extra
instantons revived the quantum tunnelling.

For two different phases, the instantons are divided into two classes which are
distinguished by a eiπ phase shift. The instantons are generating or annihilating on the
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coexistence line. When the phase transition happens, the instanton (anti-instanton) in one
phase annihilates on the coexistence line and transforms into anti-instanton (instanton).

Furthermore, from the configuration of the Jacobian, we see that the speed of both
instantons presents a sudden decrease or increase. Further calculations show that this
configuration remains the same as we increase u and λ, this is a basic property when a
phase transition happens.
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